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The CTRW has often been applied to problems related to transport in a statisti- 
cally homogeneous disordered medium, which means that there are no traps or 
reflecting boundaries to be found in the medium. Two physical applications, one 
to the migration of photons in a turbid medium and the second to the theory 
of diffusion-controlled reactions in a random medium, suggest that it might be 
useful to study properties of the CTRW, particularly as they refer to survival 
probability in the presence of a trap or a trapping surface. We calculate a 
number of these properties when the pausing-time density is asymptotically 
proportional to a stable law, i.e., tp(t)~ T~/t ~+1 as  ( t /T )~  o% where O<e< 1. 
A forthcoming paper will establish the correspondence between properties of the 
CTRW and properties of random walkers on a fractal with trapping boundaries. 
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1. I N T R O D U C T I O N  

The cont inuous- t ime r andom walk (1) (CTRW)  can be used to furnish 
approximate  solutions to a n u m b e r  of problems relating to t ranspor t  in a 
variety of disordered media. A n u m b e r  of analyses of properties of the 

CTRW,  part icularly those in which the pausing-t ime density has no finite 
moments ,  have appeared in the literature, mot ivated by such applica- 
tions. (2-7) In  most  of these analyses one assumes that  the r andom walk 

takes place in an u n b o u n d e d  medium. We have recently studied a number  
of problems related to the diffusion of photons  in a turbid medium, 
suggested by medical applicat ions (8-11) of Doppler  shift lasers. One of our  
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current investigations relates to the response of fractal media to laser 
beams to ascertain the effects of anomalous diffusion. A second set of 
problems motivating the present analysis relates to an elucidation of the 
kinetics of the reaction A + B ~ B with a single B. This has been used to 
characterize self-segregation effects that may occur in chemical reactions in 
restricted geometries. ~1z-~4) 

As will be shown in a forthcoming article based on scaling arguments 
and simulated data, one can also find useful approximations for physically 
interesting quantities for transport on a fractal in the presence of a trap, in 
terms of the solution to a CTRW on a lattice which is characterized by a 
pausing-time distribution without finite integer moments (except for the 
zeroth). These require the solution of a number of problems relating to a 
CTRW in the presence either of an absorbing point or an absorbing 
boundary. When there are traps or absorbing boundaries required by the 
formulation of a physical model, quantities exemplified by the survival 
probability and the flux into the boundary are of some interest, as well as 
the concentration profile, which is a useful quantity with or without a 
boundary. In this paper we present a number of results relating to CTRWs 
in the presence of specific trapping boundaries. Our analysis is specific for 
those CTRWs characterized by a pausing-time density of stable law form, 
i.e., in which the asymptotic form of 0(t)  is 0 ( t ) ~  T~/t ~+ 1, where T is a 
constant with the dimensions of time, and 0 < e < 1. 

2. T H E  S I N G L E  T R A P  

We first consider a CTRW in the presence of a single trap which we 
locate at r = 0 and assume that the random walker is initially at site ro. We 
calculate the asymptotic time dependence of the survival probability of the 
random walker, i.e., the probability that the random walker has not been 
trapped by time t. This problem is a generalization of classical calculations 
found in the literature of diffusion theory. Our analysis is motivated by 
studies of self-segregation phenomena in restricted geometries. ~t2 14) 

In order to carry out the indicated calculation for the CTRW, we first 
calculate the generating function for the probability that the random 
walker has not been trapped by step n for a random walk in discrete time. 
The solution to this problem can be used to make the transition to the 
survival probability in continuous time. Accordingly, let f , (ro) be the 
probability that the first passage time from ro to the trap is equal to n 
in discrete time. The survival probability can be expressed in terms of this 
function as 

S , ( ro )=  ~ f~(ro) (1) 
J - - n +  I 
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Let f(r0;  z) be the generating function of the f , ( ro)  with respect to n. It 
then follows from Eq. (1) that the generating function for the S,(ro) is 

1 - f ( r o ;  z) P(O;z)-P(ro;z) 
S(ro; z) - - (2) 

1 - z  (1 - z )  P(O;z) 

where P(r ;z)  is the generating function for the Green's function. I fp( j )  is 
the probability to be displaced by j in a single step, and the 2(0) is the 
so-called structure function defined by 2 (0)=  ~ p(j) exp(i0 "j), then it is 
well known (1) that P(r; z) can be represented as the multiple integral 

1 f ~ f~ e x p ( - i 0 " r )  
P ( r ; z ) = ( 2 - ~  ~""  ~ l - z 2 ( 0 )  dDO (3) 

Let 6(s) denote the Laplace transform of ~b(t). We may convert S(ro;z) 
into a Laplace transform of the survival probability in continuous time ~1) 
by replacing z by 6(s) in Eq. (3) and multiplying by the factor [1 - (;(s)]/s. 
Denoting this Laplace transform by ~r s) and making the appropriate 
substitution into Eq. (2), we find 

S(ro; s) - P(O; 6 ( s ) )  - P(ro; 6 ( s ) )  (4) 
~P(o; ~(~)) 

This function, together with a Tauberian theorem for Laplace trans- 
forms, ~ will be used to find asymptotic properties of the survival 
probability. 

To determine the asymptotic behavior of S(ro, t), we must find the 
behavior of S(ro;s ) in the limit s ~ 0 .  We restrict our considerations to 
symmetric lattice random walks, in which the variance of the single step 
displacements, denoted by ~r 2, is finite. In one dimension it is known (1) that 
in the small-s limit 

exp { - (xfir) [2(sT) ~ ] 1/2 
P(x; s) a[2(sT)~]l/2 (5) 

which implies that for a fixed value of x 

Xo X~ T~/2 
~(Xo; s) ~s ~ ~/2 (6) 

This result, when converted to the time domain, 
asymptotic behavior 

4 S(xo; t) ~rF(1 2) 

is equivalent to the 

(7) 
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If dw denotes the anomalous diffusion exponent, so that (X 2)  ~ t 2/d" for 
sufficiently large times, then we know that, in translating from the CTRW 
to the picture of anomalous diffusion, we have dw = 2/e, which implies that 
the survival probability decays asymptotically to 0 as (T/t) lid's'. When the 
parameter ct exceeds 1 so that the pausing-time density does have a finite 
first moment, the survival probability goes asymptotically to 0 a s  (T/t)  1/2. 
The formula in Eq. (7) approaches this type of behavior as c~--+ 1. When 
c~ = 1 there is a logarithmic correction which will not be calculated here. 

The asymptotic formula in Eq. (7) indicates that the parameter c~ 
determines the functional form of the asymptotic time dependence of 
S(x0; t). In two dimensions ct does not play the same crucial role. To see 
this, we note that lims~o P(0; ~ ( s ) ) -  P(ro; ~(s)) converges to a function of 
r 0 (i.e., when the difference is taken, the singularities that appear in the two 
functions disappear). Further, it is known that 

P(0; ~(s)) ~ In(sT) (8) 
27go -2 

The combination of these results suffices to show that the 
probability in the time domain is asymptotically equal to 

2~cr2[p(0; 1 ) - P ( r o ;  1)] 
S(ro, t) 

ln(t/T) 

survival 

(9) 

Thus, in the two-dimensional case, in contrast to one dimension, the func- 
tional form of the survival probability is independent of the parameter ~, 
which appears only as a coefficient in Eq. (9). In three or more dimensions, 
since P(ro; 1) is finite independent of ro, it follows that S(ro, t) is 
asymptotically proportional to a constant, independent of c~. This is due to 
random walkers being able to escape to infinity. 

The analysis presented to this point can also be applied to solve a 
somewhat different problem arising from models of the phenomenon of 
self-segregation in low-dimensional reacting systems. (12'13) A simplified 
model that reproduces some qualitative features of such systems can be 
framed in terms of a single trap surrounded by an initially uniform concen- 
tration of diffusing particles. We here argue that because of the symmetry 
of the assumed system the solution of the backward equation satisfied 
by S(ro, t) is equivalent to the solution of the forward equation for the 
probability p(r, t) subject to the initial condition p(r, 0 )=  1. In other 
words, we can replace the initial point r o by r in Eq. (4), in which case 
we have an expression for the Laplace transform of the probability density 
/~(r, s) for the location of the particle. 
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This identification of the probability density of the location of the 
random walker allows us to conclude that when 

the concentration profile is proportional to (x/cr)(T/t) ~/2 or, equivalently, to 
x/t  lid'' in a neighborhood of the origin. It is straightforward to calculate 
corrections to this result taking the exponential form in Eq. (5) into 
account, but the result itself suffices to allow us to look at another 
interesting quantity. In some earlier work we derived an expression for 
the probability density of the distance from the trap to the nearest 
untrapped particle. ~ When the particles move by ordinary Brownian 
motion it was shown that the average value of this distance increases at 
sufficiently long times a s  t U4. We may use the earlier analysis to show that 
at short distances the probability density for the nearest neighbor distance 
L is approximately given by 

f ( L , t )  L(~T)  ~/2 ~- -  (11) 
G 

which suggests that the nearest neighbor distance goes like 

 12, 

This again approaches the known results in the limits ~--+ 0 and ~--+ 1. 
In two dimensions, similar considerations show that the point r enters 

the results of the calculation only in the combination P(0; 1 ) - P ( r ;  1) 
appearing in Eq. (9), while the time dependence is proportional to 
[ln(t/T)] 1. We therefore estimate the form of the profile by considering 
the behavior of the spatially-dependent combination referred to above. 
Long times in the physical domain correspond to large step numbers in the 
discrete random walk. The asymptotic probability that the random walker 
is at r at step n can be found from the central limit theorem to have the 
form 

( r2) 
1-~--  exp (13) 

p~( r ) ~ 2no.2n 

which, because of cylindrical symmetry, depends only on the radial vector 
r. A knowledge of the large-n form of the probability allows us to estimate 
the function P(0; 1 ) - P ( r ;  1) in the limit of large r [ = ( x 2 +  y2)1/2] as 
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1 fo~ l_exp(_r2/2na2)d n 
e(0; 1) - P(r; 1) ~ 2--~a 2 i n 

1 ~ r2/(2~ 1 - e -"  
- -  d u  

~ 2-~a2 in (2~2)  ~ - ~  In ( r ) (14) 

Thus, the approximate form of the concentration profile is 

2 in(r/a) p(r, t)~., (15) in(t/T) 

for t >> T. Notice that the logarithmic profile in Eq. (15) can only strictly be 
correct for r >t a. It is readily shown that for r/a very small p(r, t) must be 
proportional to r 2. The asymptotic form of the profile in Eq. (15) agrees 
with simulated results. To calculate (L(t)), we follow the analysis in ref. 14 
to write 

o~ 4~ s dr] (L(t) ) f e x p l  a l~-(~/T), o r ln ( r  ) dL 

oo 4x_L 2 ln(L/a)] 
~ f ,  e x p [  ainU/T ) dL (16) 

Notice that the exponent appearing in Eq. (16) should contain a concentra- 
tion in it to render it dimensionless. This has been arbitrarily set equal 
to 1. We are interested in the behavior of the integral when t >> T, or 
correspondingly, when the coefficient of L 21n(L/a) in the exponent in 
Eq. (16) is small. Let us therefore define the dimensionless coefficient g(t) 
by 

e(t) = 47z/[~ ln(t/T)] (17) 

where, when t>> T, s ( t )<  1. The major contribution to the integral in 
Eq. (16) will come from values of L in which the exponent is approximately 
O(1). This is equivalent to the regime specified by L2=O[ln(t/T)], or 
L>~ a when t ~  T. To calculate a lowest order approximation to (L( t ) ) ,  we 
make the substitution L 2 ln (L/a )=  v 2 in Eq. (16). This allows us to express 
L in the approximate form 

L ~ v/[ln(v/a)] 1/2 (18) 

A more accurate inversion of the equation for L as a function of v includes 
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a correction that is O[-(ln in v)/(ln v)3/2], which goes to 0 in the limit 
v ~ or. Consequently, we find that to lowest order 

oo C - -  ~v2 1 ( "  co  C - -  u2 C 
(L(t) ) 

Jo (ln U) 1 / ~  dl)= Ee(t)],/~ Jo [ln u - ( 1 / 2 ) I n  e(t)] 1/2 
du 

1F c~ln(t/T) ]1/2 
{2e(t) ln[1/e(t)] }1/2 ~ ~ L~ n ~ j  (19) 

Thus, to a good approximation, the nearest neighbor distance from a trap 
to the nearest untrapped particle will increase like [In(t/T)] 1/2 with a 
correction that would be difficult to measure without access to data over 
a very wide range of values of tiT. The exponent e appears only as a coef- 
ficient in the result in Eq. (19), playing no role in determining the time 
dependence of (L(t)).(16) 

A much simpler problem than the ones discussed requires a calcula- 
tion of the flux into the trapping point. To find the time dependence of this 
flux, we note that for the discrete-time random walk the flux into a point 
due to a random walker originally at r o can be identified with the first 
passage time probability which we have denoted by f~(ro) with the 
associated generating function (1) f ( r0;  z) =P( ro ;  z)/P(O; z). It therefore 
follows that the generating function for the flux from random walkers that 
are initially uniformly distributed on the lattice is 

1 I 1 - P ( O ; z )  1 (20) J(z)=Z' f(r~ 1 - z  
r0 

where the prime on the summation indicates that there is no contribution 
from r o = 0. One converts this discrete generating function into a Laplace 
transform for the flux as a function of time by replacing z by ~(s). On con- 
sidering the stable-law form for O(t) as we have earlier, and applying a 
standard asymptotic analysis, we find that the flux in one and two dimen- ymt /sis, 
sions behaves at long times as 

1D: J(t),,~F(~/2) 

2D: J(t) F(1 +~)  ln(t/T) 

(21) 

When the parameter :~ is set equal to 1 in the one-dimensional case the 
expression for the flux has the known asymptotic value (T/t) 1/2, and in two 
dimensions it goes to 0 as I/in(t/T) in the same limit. In contrast to the 
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result obtained from Eq. (15), the order of the stable law now does appear 
in a significant way in the expression for the time dependence of the two- 
dimensional flux. In three or more dimensions the flux is asymptotically 
proportional to ( T / t )  ~ - ~  for c~ < 1. In contrast, when c~ > 1, the flux will be 
independent of time at sufficiently large values of t i T .  

3. T R A P P I N G  AT A S U R F A C E  

Our original motivation for studying the problem discussed in this 
paper was that of developing a model for photon migration in a fractal 
medium, thereby generalizing the theory used to interpret data from a 
variety of laser techniques used in both medical (9) and industrial (~7) 
applications. In such applications a laser beam is used to inject photons 
into a tissue for the purpose of determining physical properties of the tissue 
of medical interest from measurements of light transmitted through the sur- 
face. A much used model is one in which a point beam is inserted into the 
tissue, and the surface intensity of photons that diffuse through the tissue 
and subsequently reach the surface is measured either as a function of the 
distance from the injection point when the beam is continuous (~s~ or, 
keeping the measurement point fixed and injecting a pulse of light, as a 
function of time. (m) Both of these experiments are theoretically capable of 
providing information about underlying tissue characteristics, provided 
that the tissue is sufficiently homogeneous. Our original motivation for this 
investigation as well as one based on scaling arguments applied to 
simulated data was to anticipate possible differences in observed data that 
might be attributed to tissue inhomogeneity. One starting point for the 
study of photon migration in a random medium has been based on the 
statistical properties of a lattice random walk. (~s) The approximations used 
in solving such a model are basically equivalent to taking a diffusion limit, 
but the lattice picture gets around some difficulties in specifying the proper 
boundary conditions. Results obtained from the analysis of the random 
walk model have been shown to be in good agreement with experimental 
data obtained at NIH. (as) It is therefore natural to analyze the properties 
of a CTRW in which the pausing-time densities have a stable-law form in 
order to understand the effects of photon migration in a medium with 
significant heterogeneities. 

The simplest random walk model of a tissue assumes a flat surface that 
serves as an interface between a tissue of infinite extent and the air. Let the 
coordinates of such a system (in three dimensions) be (x, y, z) where z = 0 
represents the surface of the tissue and z > 0 represents the interior. These 
coordinates will be measured in terms of a scattering length which in the 
reduction of experimental data is found by curve-fitting to observed 
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results. (17'18) In the following analysis r =  (x, y, z) will be a dimensionless 
space coordinate. We will further assume that the tissue is of infinite extent, 
so that the coordinates x and y are allowed to take on all possible values. 
Retaining the simplest formulation of a model for photon migration, we 
will assume that the interface at z = 0 consists entirely of trapping points. 
The random walk itself will be assumed to be characterized by symmetric 
transition probabilities. That this is a useful model for the migration of 
laser-injected light into tissue is not obvious a priori, since it is reasonable 
to suppose that the scattering of photons is preferentially in the forward 
direction. Nevertheless, it is justifiable on the basis of the central limit 
theorem provided that there are a sufficiently large number of scattering 
events. The agreement between theoretical predictions and experimental 
data suggests that this is indeed the case, and we will henceforth use the 
assumption of symmetry. 

The structure of the tissue will be represented by a simple cubic lattice, 
and the migrating photon will be modeled in terms of a single random 
walker initially at the point (x, y, z) = (0, 0, Zo), where Zo is a single lattice 
spacing. Before introducing the CTRW we examine the properties of a ran- 
dom walk in discrete time on such a lattice, subject to the stated initial 
condition. Since z = 0  specifies the absorbing surface, we can find the 
propagator of such a random walk by the method of images. Let pn(rlro) 
be the probability for a lattice random walker in free space to be at r at 
step n, given that it was initially at to. We will assume that the variance of 
the displacement in a single step is finite. The probability that the random 
walker is at r after making n steps in the presence of the absorbing 
boundary at z = 0 is found by the method of images to be 

Q~(x, y, zlO, o, Zo)= p~(x, y, z -  zolO, O, Zo)-p~(x,  y, z + zolO, O, zo) 

(22) 

The free space propagators appearing on the right-hand side of this 
formula will be approximated by the asymptotic (in the time) form 

__~ 3 )3/2 3 ro)2 ] (23) 
p . ( r j r o ) -  \2--~nJ exp [ -  ~nn ( r -  

which is essentially the diffusion, or central-limit theorem approximation to 
the propagator of the random walk in discrete time. 

Let us first calculate the asymptotic form of the survival probability 
for a single random walker. Since Zo is generally small in comparison with 
physically interesting distances (e.g., in a number of human tissues (2~ it is 
of the order of 0.05 mm, in comparison to distances along the interface that 

822/63/5-6-14 
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are of the order of 1-2 mm), we may calculate the survival probability as 
a function of n as 

S~ ~ dx dy dz Q.(x, y, z I 0, O, Zo) 

= ( 6  ,]1/2 3z2~ / 6  \1/2 3Zo2) 
\-~n! f ~ ~ 1 7 6  (24) 

This expression for Sn can be used to find the corresponding expression for 
the Laplace transform of the survival probability through the following 
transformation: 

S n = 0  

- Z o  [ _ ~ j  exp -Zo 61n (25) 

Our interest is survival probability at long times, which requires an expan- 
sion of ~(s) to lowest nonvanishing order in s, followed by the application 
of a Tauberian theorem for Laplace transforms. (15) The sequence of these 
manipulations leads to the asymptotic estimate 

S(t) F ( 1 - ~ / 2 ) k t J  F(il----~/2) k t J ' t>> T (26) 

and the amount trapped per unit time by the surface at long times is there- 
fore proportional to (T/t) 1 +~/2 = (T/t)1 + l/dw. Although the asymptotic 
behavior of this probability at long times has been computed in the case of 
a three-dimensional system with a two-dimensional plane interface, it is 
also readily shown to be valid for a D-dimensional system with a D -  1 
interface. 

One further quantity whose properties are important in the analysis of 
data from laser experiments will be denoted by F(p, t). This function is 
defined by 

F(p, t) do = Prob{The random walker surfaces at a 
distance between p and p + dp from 
the entrance point of the beam at time t } 

where, in translating from a lattice picture to a continuum, we define p to 
be the distance from the injection point of the beam, i.e., p2 = x 2 + y2. In 
the interpretation of experimental data F(p, t) can be interpreted as the 
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observed intensity measured on the surface at time t at distance p from the 
injection point, given a pulse injection of light at t = 0 at (0, 0, Zo). Again, 
a calculation of this function can be based on the solution of the analogous 
problem in discrete time. To find the probability that we will denote by 
F,~(p), we observe that it can be expressed as 

r . (p)  =1 ~Q~,_l(x, y, zo[O, o, Zo) (27) 

since, for simplicity, the random walk is chosen to be a nearest-neighbor 
random walk on a simple cubic lattice. This allows us to identify the 
probability of making a transition (x, y, Zo) --, (x, y, 0) as being equal to 
1/6. To avoid some messy algebra, we will choose a specific form for ~(s) 
having the desired small-s behavior, i.e., 

~(s) = 1/[1 + (sT) a3 (28) 

We further denote the structure function of the random walk by 2(0), 
which for the case of a nearest-neighbor random walk on a simple cubic 
lattice is (cos 01 + cos 02 + cos 03)/3. 

The Laplace transform of the probability density for absorption at 
(x, y, 0) at time t can be found exactly as 

/~(p; s) - ~ r . (p)  ~n(s) 
n = l  

1 f g f g f g e i ( X ~ 1 7 6  -2iz003 ) 
- -  6 ( 2 ~ )  3 . . . .  �9 -r~ ( s T )  ~ -1- 1 - ,~(0)  d 3 0  ( 2 9 )  

The asymptotic form of/~(p; s) will be found by first exponentiating the 
denominator of the integrand using the identity u - l = ~  exp( -~u)d~ .  
This step leads to the representation 

1 e r ~d~ e - i ( x o ~ + y o 2 ) ( l _ e  2iz003) 
/"(p; s) = 6(2rc) 3 . . . . . .  

xexp[~(cosOl+cosO2+cosO3)]d30 (30) 

The integrals with respect to the O's can be evaluated in terms of Bessel 
functions of imaginary argument, leaving us with the final expression 

F i ~ s t  ~ e - ~ r ' ~  ~/~ ( ~ ) ' ~  ( ~ ) [ ' o  ( ~ ) -  ~0 ( ~ ) ] d ~  (31) 
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The asymptotic time dependence of F(p; t) will be determined by the 
singular terms in the expansion of this integral in the limit s T ~  O. Since 
the integral in Eq. (31) can be regarded as a Laplace transform [-the term 
(sT) ~ representing the transform parameter], we can make use of an 
Abelian theorem uS) to relate the small-sT behavior to the large-~ behavior 
of the integrand. In the limit ~ ~ oo we can write 

e-r  (~)IIo ( ~ ) -  I2~o ( ~ ) ]  ~ 6 ( 3 ) 3 / 2  ~ {1 

in which the function f(p, Zo) is 

f(p, Zo) = 4p 2 + 8z 2 - 7 

3f(p, Zo) + .. .~ 
8~ ) 

(32) 

(33) 

from which it follows that as sT--, 0 

[.(p; S) ~ Z 2 { (sT)3:~/2 + 3f(p, - -  (sT) 5cq2 + - . .  } (34) 

But this implies that in the limit t/T--* oo 

T3~,/2 
F(p; t) ~ x/-d  zg It(- 3c~/2)1 t 3~/2 + 1  

~ z~ I F ( - 3 ~ / 2 ) 1  t 3~/2+1 1 

3f(p, Zo) T 5~/2 
20 Ir(-5c~/211 t 5~/2+1 

20 I r ( - 5 ~ / 2 ) 1  + " 

T3Cq2 I 
- -  z~ iF( - 3~/2)1 t 3~/2 + 1 exp 

3f(P'z~ lF(-3c(2)[ (~T)~ I F ( ~  5 ~ ]  

(35) 

which shows that the dependence on p is Gaussian to the present order of 
approximation. Figure 1 shows data generated for F(p; t) as a function of 
p, obtained by using the exact enumeration method (s) for a random walk 
on a comb structure (21'22) (equivalent to c~= 1.5). The data points, which 
obviously fall very close to a straight line, indicate an excellent fit to the 
Gaussian form in p. We have derived Eq. (35) by using the method of 
images for the discrete-time random walk, followed by a conversion of the 
results to continuous time. Alternatively, we could have reversed these 
steps, again arriving at the result in Eq. (35). The point of this remark is 
that only the second option will be relevant in our discussion of the case 
of a fractal medium. 
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Fig. 1. Data  points taken from an exact enumeration calculation of - l n  ln[F(0,  t)/F(p; t)] 
for a comb with a trap at one end, plotted as a function of p for t = 5 x  104 steps. The 
calculated slope is -1 .96 ,  in excellent agreement with the predicted value of - 2 .  

One of the results shown in ref. 18 is that the density of transmitted 
light through the surface at distance p from the entry point of the beam in 
a steady-state experiment goes like p 3 for p >> 1. This result is also found 
by integrating the approximation in Eq. (35) over all values of t, and agrees 
with one's intuition. Although the random walkers which model the beam 
may spend a long time in the medium, they all eventually exit the surface, 
and must do so in the same spatial pattern as if they had spent a short time 
there. One further result that follows from Eq. (35) is an equation for the 
amount of photons trapped per unit time on the surface. This is defined by 

S J ( t )  - 2~r F(p;  t) p dp (36) 

The asymptotic time dependence is readily found to be 

~-( t )  o c t  -~1+1/a~') (37) 

independent of spatial dimension. In a companion paper we will show how 
these results are modified for transport in a fractal structure in the presence 
of an absorbing surface. 

In applications of the theory to the analysis of experimental data it 
is necessary to take into account the effects of internal absorption or 
scavenging. In the literature related to multiple scattering in human tissue 
this is usually included phenomenologically in terms of a Beer's law term 
of the form e x p ( - # t ) ,  which is equivalent to a constant scavenging rate. In 
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the Laplace t ransform domain  the inclusion of Beer's law absorpt ion  
changes ~(s)  to ~ ( s + # )  wherever ~(s)  appears. Such a change is quite 
impor tan t  for the asymptotic  analysis. Wi thou t  absorpt ion,  i.e., when/~ = 0, 

we can expand ~(s), for small Isl, as ~(s) ~ 1 - ( sT )  ~, whereas when/~ r 0 
the analytic behavior  in the ne ighborhood of s - -  0 is changed to 

(38) 

in the same limit. Because the transform parameter  s only appears to first 

order in this expression, the principal  factor determining the kinetics of 
survival is the constant  absorption.  For  example, the results derived for 

the survival probabi l i ty  in Eqs. (7) and (9) or for the flux in Eqs. (21) and 
(35) are to be mult ipl ied by e ~', so that the fractal-time behavior  will be 
effectively masked by the exponent ial  decay. 
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